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EVOLUTION OF THE LONG WAVE FINITE PERTURBATIONS 
DURING NONSTEADY COMBUSTION OF POWDER* 

V.S. BERMAN 

The problem of nonsteady combustion of powder is considered within the framework of 

the modified Zel'dovich-Novozhilov model /1,2/. The development of the finite sur- 

face perturbations and the initial temperature profile and studied under the assump- 

tions that the characteristic distance atwhich the perturbations change significantly 

is much greater than the characteristic dimension of relaxation of tile stationary 

temperature profile. The method of multiple scales is used to derive the equations 

describing the evolution in time of the combustion surface and temperature fieldin 

the three-dimensional space. Only the long wave structure is considered, and solu- 

tions discontinuous in the given approximation are constructed. The internal struc- 

ture of the discontinuities is not studied. 

The model /1,2/ of nonsteady combustion of powder (condensed phase) is based on the as- 
sumption that the thermal relaxation of the condensed phase is the only inertial phase in the 

gas plus powder system. It is also assumed that the chemical reaction taking place in the 

powder at the gas-condensed phase interface is quasistationary and occupies a region signific- 
antly smaller than that determined by the characteristic dimension of the thermal relaxation. 

An analogous problem arises in the study of the process when high power radiation actson 

matter /3,4/. The problem of nonsteady combustion of powder where the burning surface is flat, 

was studied in /1,2/. Basically, this consisted of investigating the stability of the steady 

state modes under small perturbations /1,2/. A self-similar mode of powder combustion was 

obtained in /5/, and nonlinear transition combustion modes were studied by numerical methods 

in /6/. The present paper attempts an analytic solution of the problem of powder combustion 

in the three-dimensional formulation under the condition that the external conditions, the in- 

itial temperature distribution and initial form of the surface all change sufficiently Slowly. 

1. Basic equations. Let us denote by t, the characteristic time of variation in the 

external condition, and by 1, the characteristic dimension over which the initial temperature 

distribution, the form of the surface and the erosion flux, all vary. We further assume that 

the following relations hold: 

0 (t&t,) = 0 (l,iZ,) = E, 0 < e < 1 (1.1) 

where 1, is the characteristic dimension and &I the characteristic time of thermal relaxation. 

We assume that the region X > S (Y,Z,t) corresponds to the space occupied by the powder where 

S(Y,Z, t) is the burning surface. The problem is formulated mathematically as follows: 

(1.2) 

Here 0 is the dimensionless temperature of the powder, t is time, R = (X, Y,Z)is the vectorof 
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space variables, 0" (R) is the initial temperature distribution, CD and F are given functions 
of their arguments, cp is the temperature gradient normal to the surface, N denotes the normal 
to the surface, V,, is the normal rate of motion of the surface, X - S (Y, 2, t) = 0 is the equa- 
tion describing thebuming surface, P (t) is the gas pressure and Q(Y,Z, t) is the velocity of 
the erosion flux. Solving the problem (1.2) yields Q (R, t) and s (Y, 2, t) for the given 
0" (R), S” (Y, Z), a’, F, P, Q. We note that the determination of the functions Fand Qwhich can, 
generally speaking, depend also on R,t and e explicitly, is a complicated problem. Theproblem 
is reduced to that of solving the steady state transport equation in the gas phase (X ~ s (I', 
Z,t))<O under the parametric dependence of the variables on time. Solution of the heat and 
mass transfer in the gaseous phase is made easier by taking into account the large values of 
the reaction activation energy which makes it possible to apply the method of matching asymp- 
totic expansions. For the one-dimensional case (plane surface of combustion) the method of 
determining the functions F and Q is thoroughly discussed in /1,2/. No solution is available 
so far for the two-dimensional and three-dimensional case. 

Since here we concern ourselves with the case when F is small, it is possible to use the 
quasi one-dimensional variant of Fand @. Therefore, in what follows, we shall regard Fand 
CD as the principal terms of expansions of the corresponding multidimensional analogs into 
series in E, for fixed R, and te . The system (1.2) admits a one-dimensional steady state 
solution 

S = Vt, 0 (X, Y, 2, t) = A exp I- I; (X - Vt)] (1.3) 
T=VA, P=P”, Q=O 

V=F(AV,P”,O), A=@(AV,P”,O) (1.4) 

The constants V and A are obtained from the solution of the algebraic equations (1.4). Taking 
into account the fact that the initial distributions vary smoothly, we pass to new independent 
variables 

t = it, P = ER, r = (x, y, z) 

Then the problem (1.2) assumes the form 

L?C?lar = EAO,A = P/3x2 4 Play2 -f d2idzZ 

n(r,O)=AC(T)exp(-E-If"(r)), f"(s,r)=CI, rz=(y,z) 

o(S(r,r),r,,T)=(D((P,rl,~), 'p=E g(s(r?,T)~~,~) 

0 (co, r2, T) = 0 

E (adar) I1 + E2 1 V,S 121-‘) = F (cp, r2, .t) 

s (rlr T, E) = S (R,, t), v = B/h, V2 =- a2iar2 

(1.5) 

We note that the steady state solution (1.31, (1.4) can be obtained from it by setting A”(r) = 
A = const, f"(r) = Vx and A = 0 (I), V = O(l). The method of regular perturbations is used in 
/7/ to obtain the solution of one-dimensional problem under the assumption that the initial 
distribution corresponds to a stationary distribution. The solution obtained however is not 
uniform with respect to the space variables. 

2. Method of solution. We shall seek the solution of the problem (1.5) using the 
multiple scales method /8,9/. In the present case the method resembles the ray method of geo- 
metrical optics /9- 12/ which is usually employed in solving linear problems. The method is 
used in /13/ to solve a nonlinear parabolic equation. Following /9/ we introduce the rapid 
variable 

q = 5 (r, t, E)E-~ = Em1 [E, (r, z) + et, (r, T) -I ET& (r, T) + . .I 

I m-1 I = 0 (1) 
(2.1) 

Here &(r,~) are unknown functions which are determined in the course of solving the problem. 
We shall seek a solution of (1.5) in the form of a uniformly suitable expansion 

0 = 8, (q,~, r) + e@, (9, r, z) + e28, (q, r,r) + . . ., (2.2) 

) q3i_, 1 = 0 (1) 

s (r2, z) = E-I [so (r2z) + csI (rp, 7) + . . .I (2.3) 

Taking into account (2.1) and passing from (7, r) to (r, r,q), we have 
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From 
expansion 

0, (11, rl T) = a (1. T) exp (g.rl) + b (T, .c), g(r, z) = (a&/at) I V& I-8 (2.6) 

The functions a(~, r) and b(r,r) are obtained from the equations for the subsequent terms of 
the expansions (2.2). We note that we can put El (r, z) = 0, without loss of generality. This 
follows from the form of (2.6). Further, carrying out the expansion in E, we have 

~V&$-++~-(A~o ~+2V&$ (2.7) 

~V~O~a~_~~,~_ (AE,, % +ZVE,V%)- 2(V&V&)$$ -A@, (2.8) 

(2.6) we see that the necessary condition for constructing the uniformly suitable 
(2.2) is, that the solution Oj(q, r,d(j = 1,2) should contain no terms of the type n 

and qiegn(i > 1). To remove such terms from the solution (2.7) it is necessary that the follow- 
ing relations hold: 

i3blk = 0, b (r, 0) = 0, b (r, T) = 0 (2.9) 

agiat - 2g (vrg,. v) g = 0 (2.10) 

aal& - 25. V (ag) - agA.E;, = 0 (2.11) 

Similarly, considering the right-hand side of (2.8) we can see that the term A@,, yields terms 
of the form IVg12+ exp (gn). It is therefore necessary to put 1 vg Ia= 0. This, together with 
(2.10), yields g = const. We choose without loss of generality const = -1, and this yieldsthe 
following Hamilton-Jacobi equation for E, (r, T) : 

aE,iar + I vg, 12 = 0 (2.12) 

while for a (r,T) (2.11) yields 

aal& + 2 (V&,.V) a + aA&, = 0 (2.13) 

Equations (2.12), (2.13) can be solved using the method of characteristics /14/. Let us 
introduce the function p = V&,, q = i&/at. Then (2.12) will assume the form p = -I p 1’. The 

characteristic equations (5 is a parameter describing the motion along the characteristic): 

$=2p. $=o, $=I, +I (2.14) 

dE,idr, = q + 2 I p I2 = I p I2 

Taking into account (2.14) we obtain 

d/d5 = ai% i- 2p.V 

and equation (2.13) assumes the form 

ddldc + aV.p =0 (2.15) 

Integrating (2.14) and (2.15) we obtain 

(2.4) 
a 
a% a+ -=x 

,-1sa 
at a? 

A=E-~IVE:~~~+E-~(A~~+Z(VSV)~)+A 

Substituting the expansion (2.2) into the first relation of (1.5) and taking (2.4) into ac- 
count, we obtain 

jV&IK$!$l_z&&=O (2.5) 

and solving (2.5) we obtain 

r = r0 +- 2p,%, P = PO, g = qO, T - To = 5; 50 - EoO = I PO 125, 

where rot P,,, qo, G, E,, a0 are the values of the corresponding quantities at 
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We formulate for &(r, T) and a(r, z) the following problem with boundary conditions: 

SO (.r = SO (ToI T)) = 0, a Cz = so (rz, t), r2, z) = @, E. (r, 0) = f"(r), a (r, 0) = A” (r) (2.16) 

The solution of (2.12) can be, generally speaking, discontinuous. This is apparent even from 
the fact that is we introduce u(~,T) = V&, and take the gradient of (2.121, then we have 

au/ar + 2u-vu= 0 

which represents an equation, well known in gas dynamics /15/, leading to the discontinuous 
solutions. When the initial and boundary conditions (2.19) are matched, i.e. when 

f" PO (b, O), rfr 0) = 0, A” (s, (r2, O), 0) = 0 

the solution of (2.121, (2.13) can have derivatives with discontinuities. 
The appearance of discontinuities suggests that narrow zones exist in the (r,T) space in 

the asymptotic solution (2.21, in which the approach adopted here cannot be used. Such discon- 
tinuities resemble shock waves of gas dynamics /15/. In order to study their structure, we 
must begin from the complete equations (1.5) and construct the corresponding new expansions. 
The equation describing the evolution of the combustion surface 

&,l&- 11 + 1 V,s, IT’/2 = F (cpo, z, r2) so (r2, 0) = so0 (r2) (2.17) 

will be dealt with below. We note that the quantity 'pO is equal to 

divided by the cosine of the angle between the normal and the x-axis. 
To find the solution of (2.21 in the neighborhood of so (r2, z), we expand E. (r, T) into a 

series in (x - so (rz, Z)): 

50 (t, 7) = a (Tg, z) (f - f) + 0 ((z - 2)) (2.18) 

Substituting (2.18) into (2.12) and setting x--,s" we obtain 

a(rz, r)= (2.19) 

Calculating the projection on the normal to the surface yields 

‘p0 (r2, z) = a (8, rp, T) 2 [ 1 + 1 V,so I"]-'/> (2.20) 

We note that the temperature gradient is governed at every point of the surface by the same 
relation as in the steady state solution (1.31. Indeed we have 

‘PO (r, 4 = a (so, rar r) vnO (so7 rzI 4 (2.21) 

Thus by solving the algebraic equations entering (1.5) for a and V,O = (as,/&) 11 + 1 v,s, I T”~, 

we obtain two equations for determining the form and temperature of the surface. The absence 
of real roots of these equations indicates the absence of combustion-extinction. Thus we have 
the following expressions for determining a(ra,z) and So(r2,T) : 

2 [I + 1 V2so (2]-‘/z = fi (rz, T) > 0, so (rt, 0) = so0 (r2) 

a (r2, r) = y (3, (r2. r), w 1 > 0 

(2.22) 

(2.23) 

where p and y are known functions of their arguments. The Cauchy problem (2.22) canbesolved 
using the method of characteristics 

dr& = - B (%. r)* PZ (1 + I pz 12)-1’2 f ‘3 = fi (r?, T) (1 + 1 pz la)-"l, g = V& PZ = OS, (rz, T) (2.24) 

and in the case when /3 (r2, z) = o(r), the characteristic equation (2.24) yields (q is a para- 
meter) 

rz -n = G (rl) T, so - so0 (rl) = B (rl) T (2.25) 

T = i fi (s) ds, G(q)= - VzsO"l(l + 1 V2soo~2)-'~~ Irr=,, 1 B (q) = (1 -I- boo I 2)-“‘jr,=q 
U 
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3. Plane surface of combustion. Consider a particular case 

sg (Q,O) = 0; a (r) - a (2) and f" (r) = f"(z), @ (cp, r,rJ = Q (cp, r), F = F (cp, 2) 

Since the boundary and initial conditions are arbitrary, the solution of (2.12) and (2.13) and 
equations describing the surface 

ds,/dz = F (cp, T), s,, (0) = 0 (3.1) 

are all independent of the coordinates Y and z. Two families of characteristics exist. One 
family originates on the axis z= O(0 <<z < cm) and the other on x = S@ (T). For the first 
family ~~ = O,c = T we have from (2.5) 

a(x,~)=A”(30)exp[-~~(x~(~f))l x [I+~~(x~(T~))T~!-~~T’ 
0 

and the other family has the form (y is a parameter) 

s=so(Y)+2~(Y)(~-~) 

(3.2) 

(3.3) 

The value of the parameter y = 'c corresponds to the surface I = so (7). In the case when the 
initial distribution is stationary, (3.2) yields for A" = 1, f”(x) = x: 

xg = I - 22, go (z, T) = 5 - 7 

a (z, ?) = 1 when x > 27 

4. Two-dimensional surface of combustion. Let us consider the combustion of pow- 
der in the framework of the model given in /1,2/. Let the surface of combustion havethe form 

x = %I0 (Y, 0) = 0 (Y) at the initial instant. Let also the erosion flux be absent. Then the 
equation describing the evolution of the surface has the form 

-g = v (z) VI + (%day)2, so (Yt 0) = w (Y) (4.1) 

where V(t) is the local normal velocity of motion of the surface. It is convenient to intro- 
duce at this stage a new, time-like variable 

I’ = s V (T’) dr’ 
” 

Then from (4.1) follows 

&/aT=V/1 +(aso/~Y)*, Sa(Y, T=O)=o(y) 

From (2.25) we have the following expressions for (4.2) (11 is a parameter): 

y-qz_+L[l+(~)2]-“~ T 

so-w(~)=[l+(~)8]-‘i’ T 

Consider the case when 
a root of the equation 

Let us assume, for the 

o(y) is a periodic function. Then doldq = 0 when n 
do/dq(q = q,,) = 0. We have 

sg = T + w (n,), Y = rl* 
sake of definitness, that 

0 (y) = 6 ces y, 6 > 0, nn = Izn, n = 0, 1, 2, . . . 

Then q,, = nn, n = 0, 1, 2, . ., t From the first equation we obtain 

(Y - n)/T = 6 sin n [I + 6 sin2 n]-"s = G (11) 

(4.2) 

(4.3) 

n,, where nln is 

(4.4) 

Since o(Y) is periodic, it is sufficient to consider the case -n< y ,<n. We shall solve 

the equation (4.4) graphically. Fig.1 depicts the graph oftheright-hand side of (4.4). We 
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project for --n<y<O the straight line 
1 (y - q) T-l. The point of intersectionofthe 

straight line I with G(n) tends, with increas- 
ing T, to the point q = 0, and as T-+w, 
(4.4) and the second equation of (4.3) together 
yield 

n=++o(T-'), --n<y<O 
(4.5) 

s~=T+6-+$+0(T-‘) as T-+oo 

The first equation of (4.4) yields. at the 
points n=---n,n=O and q=rc, 

---6+T, y=--rc 
Fig.1 

.Q= -t6$_T* 

1 

y=o (4.6) 
--6+T, y=n 

when Ocycn, then the point of intersection of G(n) with the straight line tends to n= 0 
as T+=J. 'Ihuswehave 

n = yi(GT) + 0 (T-l), 0 < y < JC (4.7) 

so=h+T+&+o(T-‘) 

A similar construction can be carried out for other values of y. When T-co, the form of 
the surface assumes, in accordance with (4.5)- (4.7), the form depicted in Fig.2 (s,, - T). Thus 
in the scale E-I the surface of combustion tends to a plane except at a finite numberofpoints 
such as in the case cos(y) = -1; y = (2k + 1) 3-c; k = 0, +I, +2. 

Fig.3 

Fig.2 

Generally speaking, when the surface profile is "twisted" near the points with large 
curvature, the proposed asymptotic method becomes inapplicable and the solution constructed 
here must be regarded as the outer /8,9/ solution. The structure of "projections" appearing 
on the surface of combustion at the points must be investigated by passing to the spatial vari- 
ables R. We note that the surface of combustion can be constructed using the method analog- 
ous to the Huygens principle /16/ used in a number of works to describe the propagation of 
a gas flame, e.g. in /17,18/. 

Next we consider the case do/dy(fm)= 0. We can put o(--oo)=O without loss of general- 
ity. We introduce the function u (Y, 0: 

%I (Y, T) = T - ~(5, T) d5 

and in place of (4.2) we have 

do 
u (Y, 0) = - dy (4.8) 

Let now o(y) be a monotonously decreasing and sufficiently smooth function o(+m)= O+<O 

with a nonzero derivative on the finite interval (0,L). When 1 do/dYf<f , the radical in (4.8) 
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can be expanded into a series and we can take into account only two terms of this expansion 
in the first approximation. Then as T-W, the solution can be written, in the following ex- 
plicit form /19/: 

i 

T, !I<0 

s,,(~, T)z: T-YWT), o<Y<T/a 

T+o+, ?Z<Y 

a = - 20, 

We note that the expansion of the radical is allowed when EQI doldy 1, otherwise these 
terms will appear only in the subsequent orders of the expansion s (z. y, 1; Q). Using above 
formulas we obtain the equation of the surface of combustion as T - 00 in the form I - so (y, T) :: 0. 

If on the other hand o(y) is sifficiently smooth and has the form shown in Fig.3 (o(O)=- maxo 
(Y)) and dddy + 0 , of a finite segment, then using the approximation in which the above form- 
ulas was derived, we obtain for T-m 

1. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 
10. 

11. 

12. 

13. 

14. 
15. 
16. 

17. 

18. 

19. 

T, Y<--1/F 
so (y, T) = T == y?/(ZT) + b/2, - VBT<Y <I/-z 

T - (a - !W, VaT<Y 

p = 20 (O), a = 2 (0 (0) - o+), o+ 2 0 

The author thanks 1u.S. Riazantsev for assessing the paper. 
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